Optimal constant weight covering codes and nonuniform group divisible 3-designs with block size four
نویسندگان
چکیده
Let Kq(n, w, t, d) be the minimum size of a code over Zq of length n, constant weight w, such that every word with weight t is within Hamming distance d of at least one codeword. In this article, we determine Kq(n, 4, 3, 1) for all n ≥ 4, q = 3, 4 or q = 2m + 1 with m ≥ 2, leaving the only case (q, n) = (3, 5) in doubt. Our construction method is mainly based on the auxiliary designs, H-frames, which play a crucial role in the recursive constructions of group divisible 3-designs similar to that of candelabra systems in the constructions of 3-wise balanced designs. As an application of this approach, several new infinite classes of nonuniform group divisible 3-designs with block size four are also constructed.
منابع مشابه
Quaternary Constant-Composition Codes with Weight Four and Distances Five or Six
The sizes of optimal constant-composition codes of weight three have been determined by Chee, Ge and Ling with four cases in doubt. Group divisible codes played an important role in their constructions. In this paper, we study the problem of constructing optimal quaternary constant-composition codes with Hamming weight four and minimum distances five or six through group divisible codes and Roo...
متن کاملAutomorphisms of Constant Weight Codes and of Divisible Designs
We show that the automorphism group of a divisible design D is isomorhic to a subgroup H of index 1 or 2 in the automorphism group Aut C(D) of the associated constant weight code. Only in very special cases, H is not the full automorphism group.
متن کاملConstructions of optimal quaternary constant weight codes via group divisible designs
Generalized Steiner systems GS(2, k, v, g) were first introduced by Etzion and used to construct optimal constant weight codes over an alphabet of size g + 1 with minimum Hamming distance 2k − 3, in which each codeword has length v and weight k. As to the existence of a GS(2, k, v, g), a lot of work has been done for k = 3, while not so much is known for k = 4. The notion k-GDD was first introd...
متن کاملModified group divisible designs with block size four
The existence of modiied group divisible designs with block size four is settled with a handful of possible exceptions.
متن کاملA Family of Group Divisible Designs of Block Size Four and Three Groups With l1=2 and l2=1 Using MOLS
We give a construction for a new family of Group Divisible Designs (6s+ 2, 3, 4; 1, 2) using Mutually Orthogonal Latin Squares for all positive integers s. Consequently, we have proved that the necessary conditions are sufficient for the existence of GDD’s of block size four with three groups, λ1=2 and λ2=1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 62 شماره
صفحات -
تاریخ انتشار 2012